I B.Tech - I Semester – Supplementary Examinations - JULY 2024

ENGINEERING PHYSICS (Common for CE, ME, IT, AIML, DS)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

1.a)	Write down two characteristics of LASER.
b)	Explain the working principle of optical fiber.
c)	Define lattice and basis with suitable examples.
d)	Draw the planes of Miller indices (112) and (210).
e)	Define polarization and polarizability.
f)	What is magnetic dipole moment? Mention the SI unit of
	magnetic dipole moment.
g)	Which phenomenon illustrates the particle nature of light?
	Also mention a phenomenon which illustrates wave nature
	of light.
h)	Define Heisenberg uncertainty Principle.
i)	Why energy bands are formed in solids?
j)	Differentiate between conductors and semiconductors.

$\mathbf{PART} - \mathbf{A}$

PART – B

	.				
			Max.		
			Marks		
	UNIT-I				
2	a)	Define population inversion, pumping and meta stable	5 M		
		state. Explain the importance of population inversion,			
		pumping and meta stable state in LASER system.			
	b)	Differentiate optical fibers based on their refractive	5 M		
		index profile of the core and explain their construction			
		and working principle with suitable ray diagram.			
OR					
3	a)	Explain the construction and working principle of	6 M		
		Ruby LASER.			
	b)	Light gathering capacity of an optical fibre is 0.479. If	4 M		
		relative core cladding index difference is 0.05,			
		calculate the refractive index of cladding when the			
		outside medium is air.			
		UNIT-II			
4	a)	Calculate the packing fraction of BCC structure with	5 M		
		suitable diagram.			
	b)	Draw all the possible crystal systems and mention their	5 M		
		lattice parameters.			
OR					
5	a)	Explain the construction and working of the x-ray	6 M		
		powder diffraction method and outline the pattern			
		analysis.			
	b)	Calculate the inter-planar spacing between the (221)	4 M		
		planes of a cubic crystal of lattice constant 0.45 nm.			
	-				

		UNIT-III	
6	a)	Explain different types of polarizations with suitable	5 M
		diagrams and give examples of each type.	
	b)	Explain the hysteresis loop formation with suitable	5 M
		diagram and explain the different parameters extracted	
		from it. What are soft and hard magnets? Give	
		examples.	
		OR	
7	a)	Derive the Clausius–Mossotti equation.	6 M
	b)	If the magnetic field and magnetic intensity are	4 M
		respectively 1.8 T and 1000 A/m, find relative	
		permeability and susceptibility of a material.	
		UNIT-IV	
8	a)	Derive the electron matter waves of the form:	5 M
		$\lambda = \frac{12.27}{\sqrt{V}}$ Å, where V is the accelerating potential.	
	b)	Write down the Fermi-Dirac distribution function and	5 M
		explain its temperature dependence with suitable	
		diagram.	
		OR	
9	a)	Derive Time independent Schrodinger wave equation.	6 M
	b)	1	4 M
		$L = 1.00 \times 10^{-14}$ m. What are the energies of the	
		ground and the first excited states?	
		UNIT-V	
10	a)	Derive an expression for electron concentration in	6 M
		conduction band for intrinsic semiconductor.	
	b)	Distinguish between Intrinsic and Extrinsic semi	4 M
		conductors with suitable examples.	

	OR				
11	a)	Define drift and diffusion current and obtain their	5 M		
		expressions.			
	b)	Explain Hall effect and find an expression for Hall	5 M		
		coefficient in terms of crystal dimension.			